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Abstract. We propose a quantum transmission based on bi-photons, which are doubly-entangled both in
polarisation and phase. This scheme finds a natural application in quantum cryptography, where we show
that an eventual eavesdropper is bound to introduce a larger error on the quantum communication than
for a single entangled bi-photon communication, when he steels the same information.

PACS. 03.67.Dd Quantum cryptography — 03.67.Hk Quantum communication —42.79.-e Optical elements,

devices, and systems

The recent fast development of quantum states manipula-
tion techniques has led to new technological applications
of quantum mechanics. Among different applications of
quantum mechanics to technology the possibility of trans-
mitting absolutely confidential messages is of the greatest
interest. This is due to the possibility of creating a key
for encoding and decoding secret messages by transmit-
ting single quanta between two parties (usually dubbed
Alice and Bob). The underlying principle of quantum key
distribution (QKD) is that nature prohibits gaining in-
formation on the state of a quantum system without dis-
turbing it (in particular no-cloning theorem guarantees
that one cannot generates copies of an arbitrary unknown
state). Thus possible eavesdropping by a third party (usu-
ally dubbed Eve) can be identified. This is at variance with
current methods of public key cryptography, which are
based on the supposed, but unproven, classical computa-
tional difficulty in solving certain problems, e.g. factoring
large numbers in prime factors. Furthermore, a quantum
computer would efficiently solve these problems [1] break-
ing these kind of classical cryptographic protocols. From
this it arises the great interest in understanding and de-
veloping secure quantum cryptographic schemes.

Since the original proposal of quantum cryptogra-
phy [2], many different protocols for this kind of trans-
mission have been suggested [3-7,9].

For example, in Ekert’s protocol [5] entangled pairs
are used. Both Alice and Bob receive one particle of the
entangled pair. Then they perform a measurement choos-
ing among at least three different selections. Alice and
Bob communicate on a classical channel the bases they
have used: if measurements were performed in the same
basis, they are perfectly correlated and can be used for
generating the secret key. The other measurements can be
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used for a test of Bell inequalities. If a third party, Eve,
tries to eavesdrop, she inevitably affects the entanglement
between the two particles leading to a reduction of the
violation of the Bell inequalities, which allows Alice and
Bob to recognise the presence of the spy.

In the BB84 scheme [4] single states are transmitted
from Alice to Bob, preparing them at random in four
partly orthogonal states (for example, using photons, in
polarisation states at 0° and 90°, 45° and 135°). Bob se-
lects the bases for the measurement at random too. Then
Alice and Bob communicate on a classical channel the
bases they have used (but not the results of course): when
they have used the same basis Bob knows Alice’s result
and vice versa and they can build a key. If Eve tries to
intercept the message, she inevitably introduces errors,
which Alice and Bob can detect by comparing a subsam-
ple of the generated key using the classic channel (which in
these schemes is supposed to be subject to eavesdropping,
but not alterable).

Many different experiments have been realised using
the former schemes, demonstrating the feasibility of QKD
up to a distance of many kilometers [8,9] both in air and
in fibre.

Most of them are based on transmission of single pho-
ton states or weak coherent states, where the alphabet is
based either on photon polarisation or on photon phase.
It must be noticed that in the case of weak coherent states
the transmission can, in principle, be unsafe for sometimes
the pulses necessarily contain more than one photon leav-
ing the possibility to an eavesdropper of using these events
for gaining information about the key without introduc-
ing any extra error [10]. The use of single photon sources
closes this potential security loophole.

General theorems have been demonstrated (mainly for
BB84 protocol) which guarantees the security of quantum
cryptography in an ideal case [9,11,12], albeit no complete
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demonstration for every conceivable attack exists'. How-
ever, real experimental schemes suffer of huge losses and
the application of these theorems is limited. Therefore, it
is mandatory the search for strategies which restrict the
information potentially obtainable by eavesdropping on
real channels.

In this paper we propose the realisation of “double en-
tanglement” on a single photon pair to be used for quan-
tum communication. More in details, the bi-photon pair
is entangled both in polarisation and in phase, eventu-
ally allowing a larger bit transmission for every pair. In
the specific scheme that we discuss in the following, the
security analysis is based on the sum of the two results
obtained for polarisation and phase measurement: we will
show that the use of this scheme makes more difficult a
successful eavesdropping. This work follows a recent line
of research [13] where quantum cryptography using multi-
levels systems is studied indicating that it leads to an eas-
ier detection of an eventual eavesdropper.

The scheme for producing such an entanglement is
relatively simple: for example it can be realised placing
on the pump beam a Mach-Zender interferometer (whose
path length difference is large compared to the pump pulse
length) before the non-linear system where a polarisation
entangled pair is generated. The pump photon can thus
follow the short or the long path originating the superpo-
sition [15]:

1 i
W) = 7 [|s) +¢|0)] (1)

where |s) and |I) denote the photon which has followed
the short and the long path respectively and ¢ the phase
difference between the two paths.

Then the pump photon creates a photon pair entan-
gled in polarisation by parametric down conversion or in
a type II crystal [14] either in two sequential type I crys-
tals [16] (see Fig. 1). The second solution presents some
advantages for it does not have the problem of differ-
ent propagation of idler and signal inside the crystal due
to different polarisation in a birefringent medium [17],
furthermore every Bell state can be easily obtained. Fi-
nally, using two type I crystals and tuning the pump wave
length, one can generate an entanglement on two different
frequencies: in this case one wave length could, for exam-
ple, be chosen at the maximum of transmission of an opti-
cal fibre or air and the other (the one remaining in Alice’s
laboratory) at the one maximising detection efficiency.
Incidentally, it must also be noticed that by using this

! Tt must be noticed that a completely general security
demonstration could even be impossible in presence of Trojan
horse attacks, i.e. when the eavesdropper can introduce some
unwanted material inside Bob lab using unused (for cryp-
tographic transmission) degrees of freedom of the quantum
states. The demonstration of security against Trojan horse at-
tacks in reference [11] does note really solve the problem (at
least with current technology) because it is based on telepor-
tation, which requires the use of EPR pairs shared with an
insecure area where they can be subject to Eve’s manipula-
tion.
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Fig. 1. Scheme for the generation of the double entangled
photon pairs. A Mach-Zender interferometer creates a state of
the pump photon which is given by the superposition of the
states corresponding to the photon following the long and the
short path respectively. The pump photon then generates or
a horizontally polarised pair in the first type I (NLC1) crys-
tal either (after having been rotated by a A/2 wave plate) a
vertically polarised one in the second type I (NLC2) crystal.
The parametric down conversions of the two crystals are then
superimposed using an optical condenser with a hole drilled in
the centre for leaving pass the pump undisturbed. The optical
path of idler, signal and pump are arranged by means of com-
pensator elements (C) for not introducing any delay among
these (see Ref. [16] for details). The superposition of the prob-
ability of generating a pair in the first or in the second crystal
originates the polarisation entanglement.
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scheme one could also easily obtain non-maximally entan-
glement both in phase (using a not 50% —50% beam split-
ter) and polarisation (attenuating the pump between the
two crystals or/and using crystals of different lengths) [16]:
this possibility has relevance for experiments on founda-
tions of quantum mechanics.

Using the two type I crystals scheme, the final bi-
photon state is:

) = 3 [sH)lsH) +1sV)|5V)

+e?(IV)|IV) + |LH)|LH))] (2)

where H and V denote the horizontal and vertical po-
larisation respectively, whilst |s) and |I) denote a photon
created by a pump photon having travelled via the short
or the long arm of the interferometer.

This is the state that will be used for quantum trans-
mission.

It must be noticed that this state remains invariant in
its form changing the polarisation basis to

1
V2

in fact the state 2 can be rewritten as:

|+) (|H) £ V)] 3)

1) = 2 lls s ) + [s-)]s—)
+e (1) ]1+) + [1-)[1-))] (4)

For implementing quantum communication, one photon is
sent to Alice, the other to Bob. Both select the photon by
its polarisation (for example using a birefringent prism),
choosing different bases and then send it to a Mach-Zender
interferometer, which introduces exactly the same differ-
ence of travel times, within the coherence time of the down
converted photons, through the two arms as the interfer-
ometer on the pump (see [15]). Here they can choose dif-
ferent phases for the long arm (see Fig. 2). The probability
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Fig. 2. The scheme for the reception apparatus of Alice and
Bob. A prism, properly rotated, allows a polarisation selection.
On each arm exiting the prism a Mach-Zender interferometer
is inserted with a phase shift on the long arm which is suitably
arranged by the observer. Photo-detectors are denoted by an
ellipse.

for detection in the central time slot? by a given combina-
tion of detectors depends on the phases (e.g. ¢, 74, %¥p) of
the three interferometers involved in production and de-
tection of the photon pair [15] and on the polarisers’ set-
tings. Different choices originate different detection bases.

Therefore, this scheme allows obtaining two indepen-
dent (as the two entanglement are independent) bits for
each received photon, one related to polarisation, the other
to phase. When Alice and Bob have chosen the same two
bases (both for polarisation and phase) they have two cor-
related outputs, which they can use for generating the key.
The other choices can be used for testing the channel (e.g.
by means of Bell inequalities in the Ekert’s protocol).

In order to identify without error the state, Eve should
hit both the bases. This probability is reduced to P? re-
spect to P for a single entangled quantum channel.

In order to quantify this statement, let us begin con-
sidering the case where Alice and Bob use the BB84 pro-
tocol (Eve produces the pair, keeps a photon which she
will measure in one of the two bases and send the other to
Bob) and the final key is given by the sum (modulo 2) of
the two results obtained by Alice and Bob in the two bases
when these have been chosen in the same way. In this case
the communication channel is a binary symmetric one and
the information on the channel is given by [18]

I'=1+plogyp+ (1 —p)logy(1—p) (5)
where p is the probability for a correct transmission.

Let us begin considering the simplest case where Eve
decides to eavesdrop the photons directed to Bob in one
of the possible basis used by Alice and Bob, both for the
phase and the polarisation ones.

In the case of a single entanglement, if Eve chooses
correctly the basis she correctly intercepts the qubit, when
she chooses the wrong basis she has a ¢ = 1/2 error.
After Alice has publicly announced the bases she used,
Eve can separate her bits in two sets corresponding to

2 Corresponding to the two indistinguishable situations when
the pump photon has followed the short (long) arm of the
interferometer and the two down converted photons both the
long (short) one (see [15]).

111

different bases and the Alice-Eve channel information is
the average of the ones of the two bases, thus she obtains
an information per bit measured I4g = 0.5. On the other
hand, she has introduced an error on Alice—-Bob channel
in the 50% of cases when she has chosen the wrong basis
leading to gap = 1/4, namely I, = 0.189.

If Alice and Bob use the double entangled scheme, the
information on the Alice-Eve channel is now [4g = 0.25.
Furthermore, she introduces a fraction of errors gap = 3/8
on the Alice-Bob channel, leading to an information on
the Alice-Bob channel T4 = 0.046.

If Eve intercepts a fraction 7 of the transmitted pho-
tons, she obtains an information 4 = 0.57 for the single
entangled channel and 14 = 0.257 for the double entan-
gled one. In order to obtain the same information she will
thus produce an error rate on the Alice-Bob channel 3
times larger for the double entangled channel, making by
far easier her identification in this case.

Let us then consider the more interesting case where
Eve chooses for eavesdropping an intermediate basis
(dubbed the Breidbart basis) for both the phase and the
polarisation ones respect to the bases used by Alice and
Bob. This choice does not introduce asymmetric errors,
making more difficult the identification of the eavesdrop-
per. The probability for Eve to get a wrong result for a
single basis is 1 = (2—+/2)/4. As the final key is given by
the sum (modulo 2) of the two results obtained by Alice
and Bob in the two bases (for polarization entanglement
and for phase entanglement) when these have been chosen
in the same way, Eve obtains the right result when she cor-
rectly identifies both the number or when she misidentifies
both. This leads to a probability, for our scheme, of having
a correct interception of py = ¢ + (1 — ¢q1)? = 3/4, which
gives, for equation (5), Iag = 0.189. Furthermore, Eve in-
troduces a fraction of errors g4 = 3/8 on the Alice-Bob
channel, leading to 45 = 0.046.

On the other hand for the single entanglement, Eve has
a qq error rate leading to Iap = 0.399 and produces 1/4
of error rate on the Alice—-Bob channel, with I4p = 0.189.

Eavesdropping a fraction 7 of the photons going to
Bob, she obtains an information I4g = 0.399n for the
single entangled channel and 145 = 0.1897 for the double
entangled one. In order to obtain the same information she
shall thus produce an error rate on the Alice-Bob channel
19/6 larger for the double entangled channel, which, as
before, results in a much larger chance of identifying the
eavesdropping in the double entangled case.

This result can also be obtained looking to the case
where Alice and Bob adopt an error correction procedure.
If they eliminate all the errors and Eve has intercepted a
fraction 7 of photons, the upper limit on the information
she could eavesdrop is [19] I§ g = (1 —r)nalag (where r is
the error fraction that she introduces), i.e. IG5 = 0.299na
for the single entangled channel, whilst this is reduced to
IS = 0.118na for the double entangled channel, where
« is the reduction factor of the key length during the er-
ror correction procedure (i.e. the ratio between the bits
available to Alice and Bob before and after the correction
procedure). Therefore, this result shows once again that
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(even if an exhaustive discussion of the value of « is miss-
ing [19]) the use of the double entangled channel allows a
large improvement of the transmission security.

As a further example, let us consider the effect on a
simple implementation of Ekert’s protocol, like the one
realised in reference [20]. In this case Alice and Bob mea-
sure their photons each on two bases. One of the bases
of Bob and Alice coincides and therefore, when both use
this basis, they obtain perfectly correlated results, which
are used to build the key. The other results are used for
measuring the Wigner inequality:

W =p(x,¥) +p(t,w) — p(x,w) >0 (6)

where p(x,®) is the coincidence probability function for
the measurement settings y and ¢ of Alice and Bob re-
spectively. This inequality is always satisfied for any local
realistic theory, but it is violated in quantum mechanics
for an appropriate choice of settings. The maximal viola-
tion is W = —1/8. If Eve intercepts a fraction 1 of pho-
tons, she reduces the violation of equation (6). The reduc-
tion is evaluated considering that in a (1 — ) fraction of
the cases the value of W is left unmodified, whilst in a frac-
tion 7 the value of W must be calculated considering the
effect of Eve on the transmission (which is easily obtained
by calculating the effect on the density matrix). In the
implementation of reference [20] the detection efficiency
of each photon path is 5% and the inequality (6) is mea-
sured with a 10% relative uncertainty. If Eve eavesdrops
the photons on the commune basis, she obtains perfect
information of the key for the intercepted photons. How-
ever, a 10% relative uncertainty on the measurement of
the Wigner function requires that Eve must intercept a
fraction of 6.7% or smaller of the photons addressed to
Bob for remaining undetected.

If a double entangled channel is used, Eve would affect
the value of two Wigner inequalities at the same time, this
requires that she reduces (for not being discovered) the
intercepted fraction to 4.7%, leading to a reduction of a
factor 0.7 for the eavesdropped information in comparison
with the single entangled channel.

Finally, as a last example, let us consider the case
where Eve decides to eavesdrop on a generic basis given
by a superposition of the basis states |sH), [lH), |sV)
and |IV). She chooses at random the basis for the mea-
surement, using a generic SO(4) (SO(2) for the single en-
tanglement) transformation of the previous basis: in this
way, on average, no asymmetric error is introduced. Af-
ter having performed the measurement, Eve passes the
photon to Bob exactly in the same state she found it in.
In order to understand the effect of such a procedure we
have performed a Monte Carlo simulation of the eaves-
dropping, evaluating the errors on the Alice-Bob channel.
Our numerical results shows that the errors on the Alice—
Bob channel are increased of a factor 1.25 about for the
double entangled channel respect to the single entangled
one, leading to an easier detection of the eavesdropper in
the double entangled channel for this example as well.

A general discussion of security in presence of joint or
coherent attacks is beyond the purpose of this work, how-
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ever, it is evident how the presence of a double entangle-
ment makes much more complicate the use of a translucent
interception scheme as, for example, the one described in
reference [21]. Thus one can expect that double entangle-
ment should also be efficient in increasing security against
these kinds of eavesdropping.

In summary, we have shown that the use of states en-
tangled on two (or eventually more) quantum degrees of
freedom at the same time allows a safer communication
for realistic quantum channels. We have also proposed a
scheme for obtaining such a double entanglement, which
can be easily realised with a simple modification of present
experiments. Finally, let us mention that the states, whose
generation is described in this paper, may have relevant
applications to the studies of foundations on quantum me-
chanics [22].
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